# REACTIVITY OF AMINOETHYLIMIDAZO[1,2-a]PYRIDINE : ACCESS TO AZA- $\gamma$-CARBOLINE SERIES 

Anne Jouanisson, 1 Olivier Chavignon, 1 Jacques Couquelet, 1 Jean-Claude Teulade, ${ }^{1 *}$ Jean-Louis Chabard,1 and Gérard Dauphın ${ }^{2}$

1 Département d'Analyse Structurale et de Pharmacologie, Faculté de Pharmacie B P 38, 28 P. H. Dunant, 63001 Clermont-Ferrand CEDEX 1, France
${ }^{2}$ Laboratoire de Chımie Organique Bıologıque, URA-CNRS 485, 63170 Aubière, France


#### Abstract

From 2-(2-aminoethyl)imidazo[1,2-a]pyridine (1), the synthesıs of compounds possessing the azatetrahydrocarboline moiety was described. The Fujii procedure did not afford the expected tetracyclic compound (5). However, the Pictet-Spengler reaction led to tricyclic aza- $\gamma$-carbolinic type compounds (8a-c).


The access to polycyclic indole alkaloids has been a widespread area of interest during last decades. In particular, the synthesis of pentacyclic indole derivatives related to yohimbine ${ }^{1}$ and reserpine due to their potential pharmaceutical importance, has been intensively investigated. ${ }^{2}$ Furthermore, it was noted that the addition of a nitrogen atom in an alkaloidic structure generally increased its activity and-or generated modifications of the pharmacological profile. ${ }^{3}$ In the course of our search on biologically active alkaloids, we decided to synthesize by different routes polycychic compounds possessing the imidazo[1,2-a]pyridine moiety. ${ }^{4}$


The first route that was investigated for the synthesis of tetracyclic compounds is depicted in Scheme 1. The condensation of 1 obtained from 2-(2-aminoethyl)imidazo[1,2-a]pyridine dihydrochloride derivative, ${ }^{5}$ with ethyl
acrylate at $0^{\circ} \mathrm{C}$ resulted in the formation of two compounds ( $\mathbf{2 a}$ ) and (2b), which were identified by mass [ $\mathrm{m} / \mathrm{z}$ : $361\left(\mathrm{M}^{+}\right) ; 261\left(\mathrm{M}^{+}\right)$respectively] and by nmr spectroscopy. The same condensation at room temperature afforded only the diester (2a) in $59 \%$ yield. Compound (2a) was dissolved in toluene and caused to undergo a Dieckmann reaction using an excess of potassium ter-butoxide as a condensing agent. ${ }^{6}$ The reaction was performed at $0^{\circ} \mathrm{C}$ for four hours with stirring at room temperature to yield compound (3a,b), which was identified in mass spectroscopy $\left[\mathrm{m} / \mathrm{z}: 315\left(\mathrm{M}^{+}\right)\right]$. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed a ketonic form (3a) (C-3' : $56.42 ; \mathrm{C}-4^{\prime}: 203.46$ ) and an enolic form (3b) (C-3' : 96.74 ; C-4' : 171.03). In order to obtain tetracyclic compound (5), oxidation of the crude piperidine derivative ( $\mathbf{3 a}, \mathbf{b}$ ) followed by cyclisation in one step was foreseen. ${ }^{7}$ With Fuj11 ${ }^{8}$ procedure, 3a,b was oxidized to the 2-[2-(2,3-dehydro-3-ethoxycarbonyl-4-oxopiperidino)ethyllimidazo[1,2-a]pyridine (4), which was identufied by mass [ $\left.\mathrm{m} / \mathrm{z}: 313\left(\mathrm{M}^{+}\right)\right]$and nmr spectroscopy. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum presented a singlet at $\delta 7.38$ for the olefinic proton, and four triplets at $\delta$ $2.37,3.03,3.48$, and 3.79 due to the methylene protons. In the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum, signals at $\delta 100.14$ and 159.57 assigned to $\mathrm{C}-\mathbf{3}^{\prime}$ and $\mathrm{C}-2^{\prime}$ confirmed the presence of the unsaturated structure.


Reagents and conditions : (i) ethyl acrylate, triethylamine, $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$; (ii) toluene, potassium tbutoxide $1.5 \mathrm{~mol}, 4 \mathrm{~h}$, room temperature ; (iii) $33 \% \mathrm{aq} . \mathrm{EtOH}, 3 \mathrm{eq} . \mathrm{Hg}(\mathrm{OAc})_{2}, 3$ eq. disodium edetate (EDTA2 Na ), reflux 3 h ; (iv) $\mathrm{H}_{2} \mathrm{SO}_{4} 10 \%$, room temperature or reflux ; (v) N -benzyliminodiacetic acid, $250^{\circ} \mathrm{C}, 5 \mathrm{~min}$.

The pyridine annelation of compound (4) by aqueous sulfuric acid ${ }^{9}$ did not afford the expected quinolizidine compound (5). It may be postulated that both conjugated carbonyl and ester functions stabilize the double bond, ${ }^{10}$ avoiding thus cyclisation into tetracyclic quinolizidne derivative.

Another route of access to tetracyclic structures was attempted according to literature data from indolopiperazinedione. ${ }^{11}$ Piperazinedione (6) was prepared in $7 \%$ yield by heating at $250^{\circ} \mathrm{C}$ for $5 \mathrm{~min} \underline{\mathrm{~N}}$ benzyliminodiacetic acid with the ethyl amine (1). The structure of compound (6) $\left[\mathrm{m} / \mathrm{z}: 348\left(\mathrm{M}^{+}\right)\right]$was established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral data. Due to the very poor yield, this route was discarded.

A new synthetic pathway was then worked up. The Pictet-Spengler reaction has been developed for the synthesis of carbolines and has often been applied to the synthesis of indole alkaloids. ${ }^{12}$ The condensation of an aldehyde R-CHO ( $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{Ph}$ ) with compound (1) at room temperature gave, through the formation of a Schiff base in an aprotic solvent, tetrahydrocarbolines (8a-c) in $20 \%, 22 \%$, and $25 \%$ yields, respectively (Scheme 2). They were identified by nmr spectroscopy ; the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{8 a}$ exhibited a quartet at $\delta 4.36$ due to $\mathrm{H}-1$. The ${ }^{13} \mathrm{C}$-nmr spectrum showed the presence of three quaternary carbons at $\delta 122.16,140.73,144.45$ corresponding to C-10a, C-4a, and C-5a respectively. In compound (8b) the two methylenic protons on $\alpha$ position of the asymmetric center C -1 were in enantiotopic relationships. We noted in ${ }^{1} \mathrm{H}$-nmr spectrum of 8 c the shielding of the signal corresponding to $\mathrm{H}-9$, due to the effect of the phenyl nucleus. All these structures were also confirmed by mass spectroscopy [m/z : 187 (8a), 201 (8b), 249 (8c)].


Reagents and conditions: (i) Acetaldehyde, propionaldehyde or benzaldehyde 1.2 mol , methanol, room temperature, 8 h .

## Scheme 2

In the Pictet-Spengler reaction, the use of various electrophilic reagents as $\mathrm{Me}_{3} \mathrm{SiCl}$, which could activate the $\mathrm{C}=\mathrm{N}$ double, bond did not enhance the reaction rate contrary to the work of Hino in the indole serie. 13

## EXPERIMENTAL

General. Ir spectra were recorded with a BECKMAN ACCULAB 2 spectrophotometer. Absorption bands are expressed in $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra were recorded on a Bruker $\mathrm{AC}-400$ spectrometer working at 400 $\mathrm{MHz}\left({ }^{1} \mathrm{H}-\mathrm{nmr}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}-\mathrm{nmr}\right)$ and on a Bruker MSL-300 working at 300 MHz ( ${ }^{1} \mathrm{H}-\mathrm{nmr}$ ) and 75 MHz ( ${ }^{13} \mathrm{C}-\mathrm{nmr}$ ). Chemical shift data are reported in ppm downfield $\delta$ from TMS. Coupling constants, $\underset{J}{ }$, are given in $\mathrm{Hz} ; \mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}, \mathrm{m}, \mathrm{ps} . \mathrm{t}$ and br s indicate singlet, doublet, triplet, quartet, multiplet, pseudo triplet and broad singlet respectively ; Im indicates imidazo[1,2-a] pyridine. Mass spectra were performed on HEWLETT PACKARD 5989A and 5985B instruments.

2-(2-Aminoethyl)imidazo[1,2-a]pyridine (1) : The treatment of 2-(2-aminoethyl)imidazo[1,2-a]pyridine dihydrochloride $(8.72 \mathrm{~g}, 38 \mathrm{mmol})^{5}$ with aqueous ammonia ( $20 \%, 50 \mathrm{ml}$ ) at room temperature for 30 min afforded after filtration pure compound (1) $(6 \mathrm{~g}, 38 \mathrm{mmol}) ; \operatorname{mp} 240-242^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\max } 3100,1550,1400$, $760 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 3.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.14\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.96(\mathrm{t}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-6)$, 7.34 (ps. t, $1 \mathrm{H}, \mathrm{H}-7$ ), $7.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-8), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 8.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13 \mathrm{C}-\mathrm{nmr}}$ ( $\left.75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 25.43\left(\mathrm{Im}-\mathrm{CH}_{2}\right), 38.45\left(\mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 111.41(\mathrm{C}-6), 113.33(\mathrm{C}-3), 115.14(\mathrm{C}-8)$, 126.99 (C-7), 127.39 (C-5), $139.98(\mathrm{C}-2), 143.23$ (C-8a); $\mathrm{ms}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity) $161\left(\mathrm{M}^{+}, 22\right), 143$ (14), 132 (100), 131 (28), 78 (18) ; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3}: \mathrm{C}, 67.08 ; \mathrm{H}, 6.83 ; \mathrm{N}, 26.09$. Found : C, 67.05; H, $6.85 ; \mathrm{N}, 26.10$.

Preparation of $2-[2-b i s(2-e t h o x y c a r b o n y l e t h y l)$ amınoethyl $]$ imidazo $[1,2-a]$ pyridıne (2a) and of $2-[(2-$ ethoxycarbonylethyl)aminoethyllimidazo[1,2-a]pyridine (2b) : Method A : A mixture of compound (1) (6 g, 38 $\mathrm{mmol})$, water $(44 \mathrm{ml})$, methanol $(60 \mathrm{ml})$ and triethylamıne $(18 \mathrm{ml})$ was sitirred and cooled to $0^{\circ} \mathrm{C}$. Ethyl acrylate $(10.6 \mathrm{ml}, 98 \mathrm{mmol})$ was then added dropwise over 15 min . The solution was stirred at $0^{\circ} \mathrm{C}$ for 6 h . After solvent removal in vacuo, the residue was chromatographed on neutral alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(98: 2, v / v)$ to yield $\mathbf{2 a}(4.7 \mathrm{~g}, 35 \%)$ as an oil ; ir $(\mathrm{NaCl}) v_{\max } 1720,1630,1170,750 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $\left.=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{t}, 4 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.76\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.98(\mathrm{q}$, $\left.4 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.61(\mathrm{t}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-6), 7.00(\mathrm{ps} . \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-7), 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 7.40(\mathrm{~d}, 1 \mathrm{H}, \underline{\mathrm{J}}=$ $9 \mathrm{~Hz}, \mathrm{H}-8), 7.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.98\left(\mathrm{CH}_{3}\right), 26.64\left(\mathrm{Im}-\mathrm{CH}_{2}\right), 32.53$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 49.03\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 53.27\left(\mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 60.06\left(\mathrm{OCH}_{2}\right), 109.48(\mathrm{C}-6), 111.74(\mathrm{C}-3), 116.52(\mathrm{C}-$
8), 124.00 (C-7), 125.21 (C-5), 144.52 (C-8a or C-2), 145.20 (C-2 or $\mathrm{C}-8 \mathrm{a}$ ), 172.31 (CO) ; ms ( $\mathrm{m} / \mathrm{z}$, relatıve intensity) $361\left(\mathrm{M}^{+}, 25\right), 274(20), 260(20), 230(100), 216(75), 145(50), 131(20), 78(20)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 63.16 ; \mathrm{H}, 7.48 ; \mathrm{N}, 11.63$. Found $\mathrm{C}, 63.18 ; \mathrm{H}, 7.47 ; \mathrm{N}, 11.64$. Further elution gave compound (2b) ( $0.30 \mathrm{~g}, 3 \%$ ) as an oil ; ir ( NaCl ) $v_{\max } 1720,1180,750 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.05(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), $4.10\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.73(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-6), 7.13(\mathrm{ps} . \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-7), 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3)$, $7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-8), 8.04(\mathrm{~d}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.19\left(\mathrm{CH}_{3}\right), 29.25$ (Im- $\left.\mathrm{CH}_{2}\right), 34.77\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.97\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 48.98\left(\mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 60.39\left(\mathrm{OCH}_{2}\right), 109.64(\mathrm{C}-6), 111.92$ (C-3), 117.12 (C-8), 124.12 (C-7), 125.35 (C-5), 145.23 (C-8a or C-2), 145.65 (C-2 or C-8a), 172.69 (CO) ; $\mathrm{ms}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity) $261\left(\mathrm{M}^{+}, 2\right), 174(13), 160(10), 145(10), 132(100), 78(10)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 64.37 ; \mathrm{H}, 7.28 ; \mathrm{N}, 16.09$. Found : C, $64.35 ; \mathrm{H}, 7.30 ; \mathrm{N}, 16.08$.

Method B : According to the above procedure at room temperature, compound (2a) was obtained as a sole product in $59 \%$ yield.

Preparation of 2-[2-(3-ethoxycarbonyl-4-oxopiperidino)ethyl]imidazo[1,2-alpyridine (3a): To a cooled ( $0^{\circ} \mathrm{C}$ ) solution of $2 \mathrm{a}(3 \mathrm{~g}, 8.3 \mathrm{mmol})$ in toluene ( 15 ml ) was added dropwise a solution of tBuOK ( $1.2 \mathrm{~g}, 10.7 \mathrm{mmol}$ ) in toluene ( 15 ml ). After stirring 4 h at room temperature, water ( 15 ml ) was added and the mixture was extracted with dichloromethane. After solvent removal in vacuo, the crude residue (3a) was directly used in the subsequent reaction without further purification ; 1r ( KBr ) $v_{\text {max }} 3400,1730,1650,1500,1240,760 ;{ }^{1} \mathrm{H}-\mathrm{nmr}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40-3.70(\mathrm{~m}, 11 \mathrm{H}), 4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 7.10$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7), 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-8), 8.00(\mathrm{~d}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ketonic form (3a) $\delta 14.25\left(\mathrm{CH}_{3}\right), 27.05\left(\mathrm{Im}-\mathrm{CH}_{2}\right), 40.65\left(\mathrm{CH}_{2}\right), 53.16\left(\mathrm{CH}_{2}\right), 55.14\left(\mathrm{CH}_{2}\right)$, $56.42\left(\mathrm{C}-3\right.$ '), $56.47\left(\mathrm{Im}^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 60.28\left(\mathrm{OCH}_{2}\right), 109.43(\mathrm{C}-6), 111.88(\mathrm{C}-3), 116.93(\mathrm{C}-8), 124.17(\mathrm{C}-7)$, 125.33 (C-5), 144.99 (C-8a or C-2), 145.55 (C-2 or C-8a), 170.12 (CO), 203.46 (C-4) ; enolic form (3b) $\delta$ $14.25\left(\mathrm{CH}_{3}\right), 27.05\left(\mathrm{Im}-\mathrm{CH}_{2}\right), 29.36\left(\mathrm{CH}_{2}\right), 49.33\left(2 \mathrm{CH}_{2}\right), 57.33\left(\mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 60.28\left(\mathrm{OCH}_{2}\right), 96.74(\mathrm{C}-$ $\left.3^{\prime}\right), 109.43$ (C-6), 111.88 (C-3), 116.93 (C-8), 124.17 (C-7), 125.33 (C-5), 144.99 (C-8a or C-2), 145.55 (C2 or $\mathrm{C}-8 \mathrm{a}), 170.12(\mathrm{CO}), 171.03\left(\mathrm{C}-4^{\prime}\right) ; \mathrm{ms}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity) $315\left(\mathrm{M}^{+}, 10\right), 242(20), 230(25), 216$ (20), 184 (40), 146 (100), 145 (90), 138 (60), 132 (70), 78 (25).

Preparation of 2-[2-(2,3-dehydro-3-ethoxycarbonyl-4-oxopıperidino)ethyl]imidazo[1,2-a]pyridine (4) : To a solution of $3(0.315 \mathrm{~g}, 1 \mathrm{mmol})$ in ethanol ( 15 ml ) was added a solution of EDTA disodium salt dihydrate $(1.1 \mathrm{~g}$,
$3 \mathrm{mmol})$ and mercuric acetate $(0.96 \mathrm{~g}, 3 \mathrm{mmol})$ in water ( 30 ml ). The resulting mixture was heated under reflux for 3 h . After cooling, the reaction mixture was poured into saturated aqueous ammonia ( $20 \%, 20 \mathrm{ml}$ ) and extracted with dichloromethane ( 30 ml ). The combined extracts were dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and evaporated ; the residue was purified by chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(90: 10, \mathrm{v} / \mathrm{v}$ ) to yield 4 ( 0.081 g , $26 \%$ ) as a viscous oil ; ir ( KBr ) $v_{\max } 1710,1680,1600,1500,1240,750 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{t}, 2 \mathrm{H}, \underline{\mathrm{J}}=8 \mathrm{~Hz}, \mathrm{CH}_{2}-5^{\prime}\right), 3.03\left(\mathrm{t}, 2 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{Im}^{2}-\mathrm{CH}_{2}\right), 3.48(\mathrm{t}, 2 \mathrm{H}, \underline{\mathrm{J}}=8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}-6^{\prime}\right), 3.79\left(\mathrm{t}, 2 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{Im}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.01\left(\mathrm{q}, 2 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.69(\mathrm{t}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-$ 6), 7.09 (ps.t, $1 \mathrm{H}, \mathrm{H}-7$ ), $7.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-8), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.51\left(\mathrm{CH}_{3}\right), 28.22\left(\mathrm{Im}^{2}-\mathrm{CH}_{2}\right), 35.95(\mathrm{C}-5$ ) $), 46.79\left(\mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $56.65\left(\mathrm{C}-6^{\prime}\right), 59.65\left(\mathrm{OCH}_{2}\right), 100.14\left(\mathrm{C}-3^{\prime}\right), 110.55(\mathrm{C}-6), 112.62(\mathrm{C}-3), 117.00(\mathrm{C}-8), 125.28(\mathrm{C}-7), 125.77$ (C-5), 141.99 (C-2), 145.51 (C-8a), 159.57 (C-2'), 165.00 (CO), 186.85 (CO) ; ms ( $\mathrm{m} / \mathrm{z}$, relative intensity) 313 $\left(\mathrm{M}^{+}, 2\right), 284(33), 266(20), 240(10), 182(10), 145(100), 132(65), 78(20) ;$ Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ : C, $65.18 ; H, 6.07$; N, 13.42. Found : C, $65.15 ; H, 6.06 ; N, 13.44$.

Preparation of 2-[2-(4-benzyl-2, 6-dioxopiperazino)ethyllimidazo[1,2-a]pyridine (6): Compound (1) (0.1 g, $0.6 \mathrm{mmol})$ and $\underline{N}$-benzyliminodiacetic acid $(0.14 \mathrm{~g}, 0.6 \mathrm{mmol})$ were mixed and heated to $250^{\circ} \mathrm{C}$ for 5 min under a nitrogen atmosphere. The residue was purified by column chromatography on neutral alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{EtOH}\left(98: 2, \mathrm{v} / \mathrm{v}\right.$ ) to give 6 as an oil ( $0.015 \mathrm{~g}, 7 \%$ ) ; ir ( KBr ) $\boldsymbol{v}_{\max } 2920,1670,750 ;{ }^{1} \mathrm{H}-\mathrm{nmr}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.05\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}, \mathrm{CH}_{2}-5^{\prime}\right), 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15(\mathrm{t}, 2 \mathrm{H}$, $\left.\underline{\mathrm{J}}=7.5 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 6.74(\mathrm{t}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-6), 7.13(\mathrm{ps} . \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-7), 7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.42(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-3), 7.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-8), 8.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.00\left(\mathrm{CH}_{2}\right)$, $29.78\left(\mathrm{CH}_{2}\right), 38.70\left(\mathrm{CH}_{2}\right), 56.39\left(\mathrm{CH}_{2}\right), 60.76\left(\mathrm{CH}_{2}\right), 109.82(\mathrm{C}-6), 112.42(\mathrm{C}-3), 117.03(\mathrm{C}-8), 124.81(\mathrm{C}-$ 7), 125.53 (C-5), 128.22 (C-Ph), 128.75 (C-Ph), 129.19 (C-Ph), 135.50 (C-ipso), 143.63 (C-8a or C-2), 144.79 (C-2 or C-8a), 169.93 (CO) ; ms (m/z, relative intensity) 348 ( $\mathrm{M}^{+}, 10$ ), 257 (100), $145(35), 132(10)$, 91 (35) ; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 68.97 ; \mathrm{H}, 5.75 ; \mathrm{N}, 16.09$. Found : C, $68.95 ; \mathrm{H}, 5.76 ; \mathrm{N}, 16.07$.

General procedure for the preparation of the 1,2,3,4-tetrahydromidazo[1,2-a:5,4-c']dipyridine (8a-c): To a solution of $\mathbf{1}(0.2 \mathrm{~g}, 1.2 \mathrm{mmol})$ in methanol $(15 \mathrm{ml})$ was added 1.2 mmol of aldehyde. The mixture was stirred for 4 h at room temperature. After addition of $\mathrm{MgSO}_{4}(2 \mathrm{~g})$ and stirring for additional 4 h , the mixture was filtered off and was washed with dichloromethane. Solvent was removed in vacuo, and the residue was chromatographed on neutral alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(98: 2, \mathrm{v} / \mathrm{v}$ ) to give compounds (8a-c) as oils.

1-Methyl-1,2,3,4-tetrahydroimidazo[1,2-a : 5,4-ct]dipyridine (8a) : Yield: $20 \%$; ir ( KBr ) $v_{\max } 3400,2920$, 1500,$760 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.10($ br s, $1 \mathrm{H}, \mathrm{NH}), 2.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-4,4^{\prime}\right), 3.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.36(\mathrm{q}, 1 \mathrm{H}, \underline{\mathrm{J}}=6.5 \mathrm{~Hz}, \mathrm{H}-1), 6.78(\mathrm{t}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-8)$, 7.13 (ps. t, 1H, H-7), $7.55(\mathrm{~d}, 1 \mathrm{H}, \underline{\mathrm{J}}=9 \mathrm{~Hz}, \mathrm{H}-6), 7.85(\mathrm{~d}, 1 \mathrm{H}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, \mathrm{H}-9) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 18.96\left(\mathrm{CH}_{3}\right), 27.02(\mathrm{C}-4), 40.58(\mathrm{C}-3), 46.22(\mathrm{C}-1), 111.71(\mathrm{C}-8), 117.36(\mathrm{C}-6), 122.16(\mathrm{C}-10 \mathrm{a}), 123.07$ (C-7 or C-9), 123.14 (C-9 or C-7), 140.73 (C-4a), 144.45 (C-5a) ; ms ( $\mathrm{m} / \mathrm{z}$, relative intensity) 187 ( $\mathrm{M}^{+}, 20$ ), 172 (100), 157 (15), 145 (18), 78 (22) ; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3}: \mathrm{C}, 70.59 ; \mathrm{H}, 6.95 ; \mathrm{N}, 22.46$. Found C, 70.55 ; H, 6.97 ; N, 22.48.

1-Ethyl-1,2,3,4-tetrahydroimidazo[1,2-a : 5,4-c']dipyridine (8b) : Yield : $22 \%$; rr ( KBr ) $v_{\max } \mathbf{3 4 0 0}, 2940$, 1500,$750 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\underline{A}} \mathrm{CH}_{3}\right), 1.94(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\underline{B}} \mathrm{CH}_{3}\right), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4,4^{\prime}\right), 3.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.12(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1), 6.77(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8), 7.12(\mathrm{ps} . \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-7), 7.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-6), 7.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{H}-9) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.62\left(\mathrm{CH}_{3}\right), 25.14\left(\mathrm{CH}_{2}\right), 26.96(\mathrm{C}-4), 40.33(\mathrm{C}-3), 52.25(\mathrm{C}-1)$, 111.75 (C-8), 117.35 (C-6), 121.35 (C-10a), 123.09 (C-7 or C-9), 123.20 (C-9 or C-7), 141.10 (C-4a), 144.49 (C-5a) ; ms (m/z, relative intensity) $201\left(\mathrm{M}^{+}, 5\right), 172(100), 155(5), 145(10), 78(20)$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3}: \mathrm{C}, 71.64 ; \mathrm{H}, 7.46 ; \mathrm{N}, 20.90$. Found : C, $71.63 ; \mathrm{H}, 7.47 ; \mathrm{N}, 20.88$.

1-Phenyl-1,2,3,4-tetrahydromidazo[1,2-a : 5,4-c']dipyridine (8c) : Yield : $25 \%$; ir ( KBr ) $v_{\max } 3400,2920$, $1490,740,690 ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4,4 \mathrm{C}^{\prime}\right), 3.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, $3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ '), $5.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 6.54(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-8), 7.09(\mathrm{ps} . \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-7), 7.20-7.33(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{Ph}, \mathrm{H}-9), 7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.92(\mathrm{C}-4), 41.89(\mathrm{C}-3), 56.27(\mathrm{C}-1)$, 111.61 (C-8), 117.04 (C-6), 118.91 (C-10a), 123.52 (C-7 or C-9), 123.66 (C-9 or C-7), 128.09 (C-Ph), 128.45 (C-Ph), 129.18 (C-Ph), 139.88 (C-ipso), 142.70 (C-4a), 144.80 (C-5a); ms ( $\mathrm{m} / \mathrm{z}$, relative intensity) 249 $\left(\mathrm{M}^{+}, 20\right), 248\left(\mathrm{M}^{+}-1,22\right), 219(25), 172(100), 145(10), 78(20) ;$ Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3}: \mathrm{C}, 77.11 ; \mathrm{H}$, $6.02 ; N, 16.87$. Found C, $77.13 ; H, 6.03 ; N, 16.84$.

## REFERENCES

1. G. B. Kline, J. Am. Chem. Soc., 1959, 81, 2251.
2. M. E. Kuehne and R. S. Muth, J. Org. Chem., 1991, 56, 2701.
3. J.-C. Chermann, J. Gruest, L. Montagnier, F. Wendling, P. Tambourin, M. Perrin, F. Pochon, C. Ducrocq, C. Rıvalle, and E. C. R. Bisagni, C. R. Acad. Sci. Ser D. 1977, 285, 945 ; F. Marsais, P.Pineau, F. Nivolliers, M. Mallet, A. Turck, A. Godard, and G. Queguiner, J. Org. Chem., 1992, 57, 565.
4. A. Diez, S. Mavel, J.-C. Teulade, O. Chavignon, M.-E. Sinibaldi, Y. Troin, and M. Rubiralta, Heterocycles, 1993, 36, 2451.
5. G. J. Durant, J. M. Loynes, and S. H. B. Wright, J. Med. Chem., 1973, 16, 1272.
6. J. Bonjoch, I. Serret, and J. Bosch, Tetrahedron, 1984, 40, 2505.
7. M. Lounasmaa, and E. Karvinen, Heterocycles, 1991, 32, 489.
8. T. Fujii, M. Ohba, and N. Sasaki, Heterocycles, 1984, 22, 1805 ; L. F. Fleser and M. Fieser, "Reagents for Organic Synthesis", Vol 1, John Wiley and Sons, Inc., New York, 1968, p. 648.
9. E. Winterfeldt, Ber., 1964, 97, 2463 ; E. Wenkert, K. G. Dave, and F. Haglid, J. Am. Chem. Soc., 1965, 87, 5461 ; M. Rubiralta, A. Diez, C. Vila, Y. Troin, and M. Feliz, J. Org. Chem., 1991, 56, 6292.
10. J. E. Johansen, B. D. Christie, and H. Rapoport, J. Org. Chem., 1981, 46, 4914.
11. N. Valls, V. M. Segarra, X. Lopez, and J. Bosch, Heterocycles, 1989, 29, 231 ; F. Yuste, Y. Pallas, H. Barrios, B. Ortiz, and R. Sanchez-Obregon, J. Heterocycl. Chem., 1986, 23, 189 ; M. D. Brewer, M. N. Burgess, R. J. J. Dorgan, R. L. Elliott, P. Mamalis, B. R. Manger, and R. A. B. Webster, J. Med. Chem. 1989, 32, 2058.
12. W. M. Whaley and T. R. Govindachari, "Organic Reactions", Vol. 6, ed. by R. Adams, John Wiley and Sons, Inc., New York, 1951, p. 151 ; A. H. Jackson and A. E. Smith, Tetrahedron, 1968, 24, 403 ; F. Ungemach and J. M. Cook, Heterocycles, 1978, 9, 1089.
13. T. Kawate, M. Nakagawa, K. Ogata, and T. Hino, Heterocycles, 1992, 33, 801.
